Source code for mindmeld.models.taggers.lstm

# -*- coding: utf-8 -*-
#
# Copyright (c) 2015 Cisco Systems, Inc. and others.  All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
import re

import joblib
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import LabelBinarizer

from .embeddings import CharacterSequenceEmbedding, WordSequenceEmbedding
from .taggers import Tagger, extract_sequence_features

DEFAULT_ENTITY_TOKEN_SPAN_INDEX = 2
GAZ_PATTERN_MATCH = r"in-gaz\|type:(\w+)\|pos:(\w+)\|"
REGEX_TYPE_POSITIONAL_INDEX = 1
DEFAULT_LABEL = "B|UNK"
DEFAULT_GAZ_LABEL = "O"
RANDOM_SEED = 1
ZERO_INITIALIZER_VALUE = 0

logger = logging.getLogger(__name__)


[docs]class LstmModel(Tagger): # pylint: disable=too-many-instance-attributes """This class encapsulates the bi-directional LSTM model and provides the correct interface for use by the tagger model"""
[docs] def fit(self, X, y): examples_arr = np.asarray(X, dtype="float32") labels_arr = np.asarray(y, dtype="int32") self._fit(examples_arr, labels_arr) return self
[docs] def predict(self, X, dynamic_resource=None): encoded_examples_arr = np.asarray(X, dtype="float32") tags_by_example_arr = self._predict(encoded_examples_arr) resized_predicted_tags = [] for query, seq_len in zip(tags_by_example_arr, self.sequence_lengths): resized_predicted_tags.append(query[:seq_len]) return resized_predicted_tags
[docs] def set_params(self, **parameters): """ Initialize params for the LSTM. The keys in the parameters dictionary are as follows: Args: parameters (dict): The keys in the parameters dictionary are as follows: number_of_epochs: The number of epochs to run (int) batch_size: The batch size for mini-batch training (int) token_lstm_hidden_state_dimension: The hidden state dimension of the LSTM cell (int) learning_rate: The learning rate of the optimizer (int) optimizer: The optimizer used to train the network is the number of entities in the dataset (str) display_epoch: The number of epochs after which the network displays common stats like accuracy (int) padding_length: The length of each query, which is fixed, so some queries will be cut short in length representing the word embedding, the row index is the word's index (int) token_embedding_dimension: The embedding dimension of the word (int) token_pretrained_embedding_filepath: The pretrained embedding file-path (str) dense_keep_prob: The dropout rate of the dense layers (float) lstm_input_keep_prob: The dropout rate of the inputs to the LSTM cell (float) lstm_output_keep_prob: The dropout rate of the outputs of the LSTM cell (float) gaz_encoding_dimension: The gazetteer encoding dimension (int) """ self.number_of_epochs = parameters.get("number_of_epochs", 20) self.batch_size = parameters.get("batch_size", 20) self.token_lstm_hidden_state_dimension = parameters.get( "token_lstm_hidden_state_dimension", 300 ) self.learning_rate = parameters.get("learning_rate", 0.005) self.optimizer_tf = parameters.get("optimizer", "adam") self.padding_length = parameters.get("padding_length", 20) self.display_epoch = parameters.get("display_epoch", 20) self.token_embedding_dimension = parameters.get( "token_embedding_dimension", 300 ) self.token_pretrained_embedding_filepath = parameters.get( "token_pretrained_embedding_filepath" ) self.dense_keep_probability = parameters.get("dense_keep_prob", 0.5) self.lstm_input_keep_prob = parameters.get("lstm_input_keep_prob", 0.5) self.lstm_output_keep_prob = parameters.get("lstm_output_keep_prob", 0.5) self.gaz_encoding_dimension = parameters.get("gaz_encoding_dimension", 100) self.use_crf_layer = parameters.get("use_crf_layer", True) self.use_char_embeddings = parameters.get("use_character_embeddings", False) self.char_window_sizes = parameters.get("char_window_sizes", [5]) self.max_char_per_word = parameters.get("maximum_characters_per_word", 20) self.character_embedding_dimension = parameters.get( "character_embedding_dimension", 10 ) self.word_level_character_embedding_size = parameters.get( "word_level_character_embedding_size", 40 )
[docs] def get_params(self, deep=True): return self.__dict__
[docs] def construct_tf_variables(self): """ Constructs the variables and operations in the TensorFlow session graph """ with self.graph.as_default(): self.dense_keep_prob_tf = tf.placeholder( tf.float32, name="dense_keep_prob_tf" ) self.lstm_input_keep_prob_tf = tf.placeholder( tf.float32, name="lstm_input_keep_prob_tf" ) self.lstm_output_keep_prob_tf = tf.placeholder( tf.float32, name="lstm_output_keep_prob_tf" ) self.query_input_tf = tf.placeholder( tf.float32, [None, self.padding_length, self.token_embedding_dimension], name="query_input_tf", ) self.gaz_input_tf = tf.placeholder( tf.float32, [None, self.padding_length, self.gaz_dimension], name="gaz_input_tf", ) self.label_tf = tf.placeholder( tf.int32, [None, int(self.padding_length), self.output_dimension], name="label_tf", ) self.batch_sequence_lengths_tf = tf.placeholder( tf.int32, shape=[None], name="batch_sequence_lengths_tf" ) self.batch_sequence_mask_tf = tf.placeholder( tf.bool, shape=[None], name="batch_sequence_mask_tf" ) if self.use_char_embeddings: self.char_input_tf = tf.placeholder( tf.float32, [ None, self.padding_length, self.max_char_per_word, self.character_embedding_dimension, ], name="char_input_tf", ) combined_embedding_tf = self._construct_embedding_network() self.lstm_output_tf = self._construct_lstm_network(combined_embedding_tf) self.lstm_output_softmax_tf = tf.nn.softmax( self.lstm_output_tf, name="output_softmax_tensor" ) self.optimizer_tf, self.cost_tf = self._define_optimizer_and_cost() self.global_init = tf.global_variables_initializer() self.local_init = tf.local_variables_initializer() self.saver = tf.train.Saver()
[docs] def extract_features(self, examples, config, resources, y=None, fit=True): """Transforms a list of examples into features that are then used by the deep learning model. Args: examples (list of mindmeld.core.Query): a list of queries config (ModelConfig): The ModelConfig which may contain information used for feature extraction resources (dict): Resources which may be used for this model's feature extraction y (list): A list of label sequences Returns: (sequence_embeddings, encoded_labels, groups): features for the LSTM network """ del fit # unused -- we use the value of y to determine whether to encode labels if y: # Train time self.resources = resources padded_y = self._pad_labels(y, DEFAULT_LABEL) y_flat = [item for sublist in padded_y for item in sublist] encoded_labels_flat = self.label_encoder.fit_transform(y_flat) encoded_labels = [] start_index = 0 for label_sequence in padded_y: encoded_labels.append( encoded_labels_flat[start_index: start_index + len(label_sequence)] ) start_index += len(label_sequence) gaz_entities = list(self.resources.get("gazetteers", {}).keys()) gaz_entities.append(DEFAULT_GAZ_LABEL) self.gaz_encoder.fit(gaz_entities) # The gaz dimension are the sum total of the gazetteer entities and # the 'other' gaz entity, which is the entity for all non-gazetteer tokens self.gaz_dimension = len(gaz_entities) self.output_dimension = len(self.label_encoder.classes_) else: # Predict time encoded_labels = None # Extract features and classes ( x_sequence_embeddings_arr, self.gaz_features_arr, self.char_features_arr, ) = self._get_features(examples) self.sequence_lengths = self._extract_seq_length(examples) # There are no groups in this model groups = None return x_sequence_embeddings_arr, encoded_labels, groups
[docs] def setup_model(self, config): self.set_params(**config.params) self.label_encoder = LabelBinarizer() self.gaz_encoder = LabelBinarizer() self.graph = tf.Graph() self.saver = None self.example_type = config.example_type self.features = config.features self.query_encoder = WordSequenceEmbedding( self.padding_length, self.token_embedding_dimension, self.token_pretrained_embedding_filepath, ) if self.use_char_embeddings: self.char_encoder = CharacterSequenceEmbedding( self.padding_length, self.character_embedding_dimension, self.max_char_per_word, )
[docs] def construct_feed_dictionary( self, batch_examples, batch_char, batch_gaz, batch_seq_len, batch_labels=None ): """Constructs the feed dictionary that is used to feed data into the tensors Args: batch_examples (ndarray): A batch of examples batch_char (ndarray): A batch of character features batch_gaz (ndarray): A batch of gazetteer features batch_seq_len (ndarray): A batch of sequence length of each query batch_labels (ndarray): A batch of labels Returns: The feed dictionary """ if batch_labels is None: batch_labels = [] return_dict = { self.query_input_tf: batch_examples, self.batch_sequence_lengths_tf: batch_seq_len, self.gaz_input_tf: batch_gaz, self.dense_keep_prob_tf: self.dense_keep_probability, self.lstm_input_keep_prob_tf: self.lstm_input_keep_prob, self.lstm_output_keep_prob_tf: self.lstm_output_keep_prob, self.batch_sequence_mask_tf: self._generate_boolean_mask(batch_seq_len), } if len(batch_labels) > 0: return_dict[self.label_tf] = batch_labels if len(batch_char) > 0: return_dict[self.char_input_tf] = batch_char return return_dict
def _construct_embedding_network(self): """Constructs a network based on the word embedding and gazetteer inputs and concatenates them together Returns: Combined embeddings of the word and gazetteer embeddings """ initializer = tf.contrib.layers.xavier_initializer(seed=RANDOM_SEED) dense_gaz_embedding_tf = tf.contrib.layers.fully_connected( inputs=self.gaz_input_tf, num_outputs=self.gaz_encoding_dimension, weights_initializer=initializer, ) batch_size_dim = tf.shape(self.query_input_tf)[0] if self.use_char_embeddings: word_level_char_embeddings_list = [] for window_size in self.char_window_sizes: word_level_char_embeddings_list.append( self.apply_convolution( self.char_input_tf, batch_size_dim, window_size ) ) word_level_char_embedding = tf.concat(word_level_char_embeddings_list, 2) # Combined the two embeddings combined_embedding_tf = tf.concat( [self.query_input_tf, word_level_char_embedding], axis=2 ) else: combined_embedding_tf = self.query_input_tf combined_embedding_tf = tf.concat( [combined_embedding_tf, dense_gaz_embedding_tf], axis=2 ) return combined_embedding_tf
[docs] def apply_convolution(self, input_tensor, batch_size, char_window_size): """Constructs a convolution network of a specific window size Args: input_tensor (tensor): The input tensor to the network batch_size (int): The batch size of the training data char_window_size (int): The character window size of each stride Returns: (Tensor): Convolved output tensor """ convolution_reshaped_char_embedding = tf.reshape( input_tensor, [ -1, self.padding_length, self.max_char_per_word, self.character_embedding_dimension, 1, ], ) # Index 0 dimension is 1 because we want to apply this to every word. Index 1 dimension is # char_window_size since this is the convolution window size. Index 3 dimension is # 1 since the input channel is 1 dimensional (the sequence string). Index 4 dimension is # the output dimension which is a hyper-parameter. char_convolution_filter = tf.Variable( tf.random_normal( [ 1, char_window_size, self.character_embedding_dimension, 1, self.word_level_character_embedding_size, ], dtype=tf.float32, ) ) # Strides is None because we want to advance one character at a time and one word at a time conv_output = tf.nn.convolution( convolution_reshaped_char_embedding, char_convolution_filter, padding="SAME" ) # Max pool over each word, captured by the size of the filter corresponding to an entire # single word max_pool = tf.nn.pool( conv_output, window_shape=[ 1, self.max_char_per_word, self.character_embedding_dimension, ], pooling_type="MAX", padding="VALID", ) # Transpose because shape before is batch_size BY query_padding_length BY 1 BY 1 # BY num_filters. This transform rearranges the dimension of each rank such that # the num_filters dimension comes after the query_padding_length, so the last index # 4 is brought after the index 1. max_pool = tf.transpose(max_pool, [0, 1, 4, 2, 3]) max_pool = tf.reshape( max_pool, [batch_size, self.padding_length, self.word_level_character_embedding_size], ) char_convolution_bias = tf.Variable( tf.random_normal( [ self.word_level_character_embedding_size, ] ) ) char_convolution_bias = tf.tile(char_convolution_bias, [self.padding_length]) char_convolution_bias = tf.reshape( char_convolution_bias, [self.padding_length, self.word_level_character_embedding_size], ) char_convolution_bias = tf.tile(char_convolution_bias, [batch_size, 1]) char_convolution_bias = tf.reshape( char_convolution_bias, [batch_size, self.padding_length, self.word_level_character_embedding_size], ) word_level_char_embedding = tf.nn.relu(max_pool + char_convolution_bias) return word_level_char_embedding
def _define_optimizer_and_cost(self): """This function defines the optimizer and cost function of the LSTM model Returns: AdamOptimizer, Tensor: The optimizer function to reduce loss and the loss values """ if self.use_crf_layer: flattened_labels = tf.cast(tf.argmax(self.label_tf, axis=2), tf.int32) log_likelihood, _ = tf.contrib.crf.crf_log_likelihood( self.lstm_output_tf, flattened_labels, self.batch_sequence_lengths_tf ) cost_tf = tf.reduce_mean(-log_likelihood, name="cost_tf") else: masked_logits = tf.boolean_mask( tf.reshape(self.lstm_output_tf, [-1, self.output_dimension]), self.batch_sequence_mask_tf, ) masked_labels = tf.boolean_mask( tf.reshape(self.label_tf, [-1, self.output_dimension]), self.batch_sequence_mask_tf, ) softmax_loss_tf = tf.nn.softmax_cross_entropy_with_logits( logits=masked_logits, labels=masked_labels, name="softmax_loss_tf" ) cost_tf = tf.reduce_mean(softmax_loss_tf, name="cost_tf") optimizer_tf = tf.train.AdamOptimizer( learning_rate=float(self.learning_rate) ).minimize(cost_tf) return optimizer_tf, cost_tf def _calculate_score(self, output_arr, label_arr, seq_lengths_arr): """This function calculates the sequence score of all the queries, that is, the total number of queries where all the tags are predicted correctly. Args: output_arr (ndarray): Output array of the LSTM network label_arr (ndarray): Label array of the true labels of the data seq_lengths_arr (ndarray): A real sequence lengths of each example Returns: int: The number of queries where all the tags are correct """ reshaped_output_arr = np.reshape( output_arr, [-1, int(self.padding_length), self.output_dimension] ) reshaped_output_arr = np.argmax(reshaped_output_arr, 2) reshaped_labels_arr = np.argmax(label_arr, 2) score = 0 for idx, _ in enumerate(reshaped_output_arr): seq_len = seq_lengths_arr[idx] predicted_tags = reshaped_output_arr[idx][:seq_len] actual_tags = reshaped_labels_arr[idx][:seq_len] if np.array_equal(predicted_tags, actual_tags): score += 1 return score def _pad_labels(self, list_of_sequences, default_token): """ Pads the label sequence Args: list_of_sequences (list): A list of label sequences default_token (str): The default label token for padding purposes Returns: list: padded output """ padded_output = [] for sequence in list_of_sequences: padded_seq = [default_token] * self.padding_length for idx, _ in enumerate(sequence): if idx < self.padding_length: padded_seq[idx] = sequence[idx] padded_output.append(padded_seq) return padded_output def _generate_boolean_mask(self, seq_lengths): """ Generates boolean masks for each query in a query list Args: seq_lengths (list): A list of sequence lengths Return: list: A list of boolean masking values """ mask = [False] * (len(seq_lengths) * self.padding_length) for idx, seq_len in enumerate(seq_lengths): start_index = idx * self.padding_length for i in range(start_index, start_index + seq_len): mask[i] = True return mask @staticmethod def _construct_lstm_state(initializer, hidden_dimension, batch_size, name): """Construct the LSTM initial state Args: initializer (tf.contrib.layers.xavier_initializer): initializer used hidden_dimension: num dimensions of the hidden state variable batch_size: the batch size of the data name: suffix of the variable going to be used Returns: (LSTMStateTuple): LSTM state information """ initial_cell_state = tf.get_variable( "initial_cell_state_{}".format(name), shape=[1, hidden_dimension], dtype=tf.float32, initializer=initializer, ) initial_output_state = tf.get_variable( "initial_output_state_{}".format(name), shape=[1, hidden_dimension], dtype=tf.float32, initializer=initializer, ) c_states = tf.tile(initial_cell_state, tf.stack([batch_size, 1])) h_states = tf.tile(initial_output_state, tf.stack([batch_size, 1])) return tf.contrib.rnn.LSTMStateTuple(c_states, h_states) def _construct_regularized_lstm_cell(self, hidden_dimensions, initializer): """Construct a regularized lstm cell based on a dropout layer Args: hidden_dimensions: num dimensions of the hidden state variable initializer (tf.contrib.layers.xavier_initializer): initializer used Returns: (DropoutWrapper): regularized LSTM cell """ lstm_cell = tf.contrib.rnn.CoupledInputForgetGateLSTMCell( hidden_dimensions, forget_bias=1.0, initializer=initializer, state_is_tuple=True, ) lstm_cell = tf.contrib.rnn.DropoutWrapper( lstm_cell, input_keep_prob=self.lstm_input_keep_prob_tf, output_keep_prob=self.lstm_output_keep_prob_tf, ) return lstm_cell def _construct_lstm_network(self, input_tensor): """This function constructs the Bi-Directional LSTM network Args: input_tensor (Tensor): Input tensor to the LSTM network Returns: output_tensor (Tensor): The output layer of the LSTM network """ n_hidden = int(self.token_lstm_hidden_state_dimension) # We cannot use the static batch size variable since for the last batch set # of data, the data size could be less than the batch size batch_size_dim = tf.shape(input_tensor)[0] # We use the xavier initializer for some of it's gradient control properties initializer = tf.contrib.layers.xavier_initializer(seed=RANDOM_SEED) # Forward LSTM construction lstm_cell_forward_tf = self._construct_regularized_lstm_cell( n_hidden, initializer ) initial_state_forward_tf = self._construct_lstm_state( initializer, n_hidden, batch_size_dim, "lstm_cell_forward_tf" ) # Backward LSTM construction lstm_cell_backward_tf = self._construct_regularized_lstm_cell( n_hidden, initializer ) initial_state_backward_tf = self._construct_lstm_state( initializer, n_hidden, batch_size_dim, "lstm_cell_backward_tf" ) # Combined the forward and backward LSTM networks (output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw=lstm_cell_forward_tf, cell_bw=lstm_cell_backward_tf, inputs=input_tensor, sequence_length=self.batch_sequence_lengths_tf, dtype=tf.float32, initial_state_fw=initial_state_forward_tf, initial_state_bw=initial_state_backward_tf, ) # Construct the output later output_tf = tf.concat([output_fw, output_bw], axis=-1) output_tf = tf.nn.dropout(output_tf, self.dense_keep_prob_tf) output_weights_tf = tf.get_variable( name="output_weights_tf", shape=[2 * n_hidden, self.output_dimension], dtype="float32", initializer=initializer, ) output_weights_tf = tf.tile(output_weights_tf, [batch_size_dim, 1]) output_weights_tf = tf.reshape( output_weights_tf, [batch_size_dim, 2 * n_hidden, self.output_dimension] ) zero_initializer = tf.constant_initializer(ZERO_INITIALIZER_VALUE) output_bias_tf = tf.get_variable( name="output_bias_tf", shape=[self.output_dimension], dtype="float32", initializer=zero_initializer, ) output_tf = tf.add( tf.matmul(output_tf, output_weights_tf), output_bias_tf, name="output_tensor", ) return output_tf def _get_model_constructor(self): return self def _extract_seq_length(self, examples): """Extract sequence lengths from the input examples Args: examples (list of Query objects): List of input queries Returns: (list): List of seq lengths for each query """ seq_lengths = [] for example in examples: if len(example.normalized_tokens) > self.padding_length: seq_lengths.append(self.padding_length) else: seq_lengths.append(len(example.normalized_tokens)) return seq_lengths def _get_features(self, examples): """Extracts the word and gazetteer embeddings from the input examples Args: examples (list of mindmeld.core.Query): a list of queries Returns: (tuple): Word embeddings and Gazetteer one-hot embeddings """ x_feats_array = [] gaz_feats_array = [] char_feats_array = [] for example in examples: x_feat, gaz_feat, char_feat = self._extract_features(example) x_feats_array.append(x_feat) gaz_feats_array.append(gaz_feat) char_feats_array.append(char_feat) # save all the embeddings used for model saving purposes self.query_encoder.save_embeddings() if self.use_char_embeddings: self.char_encoder.save_embeddings() x_feats_array = np.asarray(x_feats_array) gaz_feats_array = np.asarray(gaz_feats_array) char_feats_array = ( np.asarray(char_feats_array) if self.use_char_embeddings else [] ) return x_feats_array, gaz_feats_array, char_feats_array def _gaz_transform(self, list_of_tokens_to_transform): """This function is used to handle special logic around SKLearn's LabelBinarizer class which behaves in a non-standard way for 2 classes. In a 2 class system, it encodes the classes as [0] and [1]. However, in a 3 class system, it encodes the classes as [0,0,1], [0,1,0], [1,0,0] and sustains this behavior for num_class > 2. We want to encode 2 class systems as [0,1] and [1,0]. This function does that. Args: list_of_tokens_to_transform (list): A sequence of class labels Returns: (array): corrected encoding from the binarizer """ output = self.gaz_encoder.transform(list_of_tokens_to_transform) if len(self.gaz_encoder.classes_) == 2: output = np.hstack((1 - output, output)) return output def _extract_features(self, example): """Extracts feature dicts for each token in an example. Args: example (mindmeld.core.Query): an query Returns: (list of dict): features """ default_gaz_one_hot = self._gaz_transform([DEFAULT_GAZ_LABEL]).tolist()[0] extracted_gaz_tokens = [default_gaz_one_hot] * self.padding_length extracted_sequence_features = extract_sequence_features( example, self.example_type, self.features, self.resources ) for index, extracted_gaz in enumerate(extracted_sequence_features): if index >= self.padding_length: break if extracted_gaz == {}: continue combined_gaz_features = set() for key in extracted_gaz.keys(): regex_match = re.match(GAZ_PATTERN_MATCH, key) if regex_match: # Examples of gaz features here are: # in-gaz|type:city|pos:start|p_fe, # in-gaz|type:city|pos:end|pct-char-len # There were many gaz features of the same type that had # bot start and end position tags for a given token. # Due to this, we did not implement functionality to # extract the positional information due to the noise # associated with it. combined_gaz_features.add( regex_match.group(REGEX_TYPE_POSITIONAL_INDEX) ) if len(combined_gaz_features) != 0: total_encoding = np.zeros(self.gaz_dimension, dtype=np.int) for encoding in self._gaz_transform(list(combined_gaz_features)): total_encoding = np.add(total_encoding, encoding) extracted_gaz_tokens[index] = total_encoding.tolist() padded_query = self.query_encoder.encode_sequence_of_tokens( example.normalized_tokens ) if self.use_char_embeddings: padded_char = self.char_encoder.encode_sequence_of_tokens( example.normalized_tokens ) else: padded_char = None return padded_query, extracted_gaz_tokens, padded_char def _fit(self, X, y): """Trains a classifier without cross-validation. It iterates through the data, feeds batches to the tensorflow session graph and fits the model based on the feed forward and back propagation steps. Args: X (list of list of list of str): a list of queries to train on y (list of list of str): a list of expected labels """ self.construct_tf_variables() self.session = tf.Session(graph=self.graph) self.session.run([self.global_init, self.local_init]) for epochs in range(int(self.number_of_epochs)): logger.info("Training epoch : %s", epochs) indices = list(range(len(X))) np.random.shuffle(indices) gaz = self.gaz_features_arr[indices] char = self.char_features_arr[indices] if self.use_char_embeddings else [] examples = X[indices] labels = y[indices] batch_size = int(self.batch_size) num_batches = int(math.ceil(len(examples) / batch_size)) seq_len = np.array(self.sequence_lengths)[indices] for batch in range(num_batches): batch_start_index = batch * batch_size batch_end_index = (batch * batch_size) + batch_size batch_info = { "batch_examples": examples[batch_start_index:batch_end_index], "batch_labels": labels[batch_start_index:batch_end_index], "batch_gaz": gaz[batch_start_index:batch_end_index], "batch_seq_len": seq_len[batch_start_index:batch_end_index], "batch_char": char[batch_start_index:batch_end_index], } if batch % int(self.display_epoch) == 0: output, loss, _ = self.session.run( [self.lstm_output_tf, self.cost_tf, self.optimizer_tf], feed_dict=self.construct_feed_dictionary(**batch_info), ) score = self._calculate_score( output, batch_info["batch_labels"], batch_info["batch_seq_len"] ) accuracy = score / (len(batch_info["batch_examples"]) * 1.0) logger.info( "Trained batch from index {} to {}, " "Mini-batch loss: {:.5f}, " "Training sequence accuracy: {:.5f}".format( batch * batch_size, (batch * batch_size) + batch_size, loss, accuracy, ) ) else: self.session.run( self.optimizer_tf, feed_dict=self.construct_feed_dictionary(**batch_info), ) return self def _predict(self, X): """Predicts tags for query sequence Args: X (list of list of list of str): a list of input representations Returns: (list): A list of decoded labelled predicted by the model """ seq_len_arr = np.array(self.sequence_lengths) # During predict time, we make sure no nodes are dropped out self.dense_keep_probability = 1.0 self.lstm_input_keep_prob = 1.0 self.lstm_output_keep_prob = 1.0 output = self.session.run( [self.lstm_output_softmax_tf], feed_dict=self.construct_feed_dictionary( X, self.char_features_arr, self.gaz_features_arr, seq_len_arr ), ) output = np.reshape( output, [-1, int(self.padding_length), self.output_dimension] ) output = np.argmax(output, 2) decoded_queries = [] for idx, encoded_predict in enumerate(output): decoded_query = [] for tag in encoded_predict[: self.sequence_lengths[idx]]: decoded_query.append(self.label_encoder.classes_[tag]) decoded_queries.append(decoded_query) return decoded_queries def _predict_proba(self, X): """Predict tags for query sequence with their confidence scores Args: X (list of list of list of str): a list of input representations Returns: (list): A list of decoded labelled predicted by the model with confidence scores """ seq_len_arr = np.array(self.sequence_lengths) # During predict time, we make sure no nodes are dropped out self.dense_keep_probability = 1.0 self.lstm_input_keep_prob = 1.0 self.lstm_output_keep_prob = 1.0 output = self.session.run( [self.lstm_output_softmax_tf], feed_dict=self.construct_feed_dictionary( X, self.char_features_arr, self.gaz_features_arr, seq_len_arr ), ) output = np.reshape( output, [-1, int(self.padding_length), self.output_dimension] ) class_output = np.argmax(output, 2) decoded_queries = [] for idx, encoded_predict in enumerate(class_output): decoded_query = [] for token_idx, tag in enumerate( encoded_predict[: self.sequence_lengths[idx]] ): decoded_query.append( [self.label_encoder.classes_[tag], output[idx][token_idx][tag]] ) decoded_queries.append(decoded_query) return decoded_queries @property def is_serializable(self): return False @staticmethod def _get_tagger_resources_save_path(model_path): tagger_resources_save_path = model_path.split(".pkl")[0] + "_model_files" os.makedirs(os.path.dirname(tagger_resources_save_path), exist_ok=True) return tagger_resources_save_path
[docs] def dump(self, path): """ Saves the Tensorflow model Args: path (str): the folder path for the entity model folder Returns: path (str): entity model folder """ path = self._get_tagger_resources_save_path(path) if not os.path.isdir(path): os.makedirs(path) if not self.saver: # This conditional happens when there are no entities for the associated model return path self.saver.save(self.session, os.path.join(path, "lstm_model")) # Save feature extraction variables variables_to_dump = { "resources": self.resources, "gaz_dimension": self.gaz_dimension, "output_dimension": self.output_dimension, "gaz_features": self.gaz_features_arr, "sequence_lengths": self.sequence_lengths, "gaz_encoder": self.gaz_encoder, "label_encoder": self.label_encoder, } joblib.dump(variables_to_dump, os.path.join(path, ".feature_extraction_vars")) return path
[docs] def unload(self): self.graph = None self.session = None self.resources = None self.gaz_dimension = None self.output_dimension = None self.gaz_features = None self.sequence_lengths = None self.gaz_encoder = None self.label_encoder = None
[docs] def load(self, path): """ Loads the Tensorflow model Args: path (str): the folder path for the entity model folder """ path = self._get_tagger_resources_save_path(path) if not os.path.exists(os.path.join(path, "lstm_model.meta")): # This conditional is for models with no labels where no TF graph was built # for this. return self.graph = tf.Graph() self.session = tf.Session(graph=self.graph) with self.graph.as_default(): saver = tf.train.import_meta_graph(os.path.join(path, "lstm_model.meta")) saver.restore(self.session, os.path.join(path, "lstm_model")) # Restore tensorflow graph variables self.dense_keep_prob_tf = self.session.graph.get_tensor_by_name( "dense_keep_prob_tf:0" ) self.lstm_input_keep_prob_tf = self.session.graph.get_tensor_by_name( "lstm_input_keep_prob_tf:0" ) self.lstm_output_keep_prob_tf = self.session.graph.get_tensor_by_name( "lstm_output_keep_prob_tf:0" ) self.query_input_tf = self.session.graph.get_tensor_by_name( "query_input_tf:0" ) self.gaz_input_tf = self.session.graph.get_tensor_by_name("gaz_input_tf:0") self.label_tf = self.session.graph.get_tensor_by_name("label_tf:0") self.batch_sequence_lengths_tf = self.session.graph.get_tensor_by_name( "batch_sequence_lengths_tf:0" ) self.batch_sequence_mask_tf = self.session.graph.get_tensor_by_name( "batch_sequence_mask_tf:0" ) self.lstm_output_tf = self.session.graph.get_tensor_by_name( "output_tensor:0" ) self.lstm_output_softmax_tf = self.session.graph.get_tensor_by_name( "output_softmax_tensor:0" ) if self.use_char_embeddings: self.char_input_tf = self.session.graph.get_tensor_by_name( "char_input_tf:0" ) # Load feature extraction variables variables_to_load = joblib.load(os.path.join(path, ".feature_extraction_vars")) self.resources = variables_to_load["resources"] self.gaz_dimension = variables_to_load["gaz_dimension"] self.output_dimension = variables_to_load["output_dimension"] self.gaz_features = variables_to_load["gaz_features"] self.sequence_lengths = variables_to_load["sequence_lengths"] self.gaz_encoder = variables_to_load["gaz_encoder"] self.label_encoder = variables_to_load["label_encoder"]